
 3

Abstract— Software development has been

suffering, for many decades, from the lack of
simple and powerful methodologies and
tools. Despite the tremendous advances in
this research field, the crisis has still not been
overcome and the proposed remedies are far
from resolving the problems of software
development and maintenance, Lately, a new
and very promising methodology, called
Lyee, has been proposed. It aims to
automatically generate programs from simple
user requirements.

 The purpose of this paper is, on the one
hand, to provide a short and technical
introduction to the Lyee software
development methodology, and on the other
hand, to show how some classical static
analysis techniques (execution time and
memory space optimization, typing, slicing,
etc.) can considerably improve many aspects
of this new methodology. This paper
contributes on introducing new techniques
for software system design, for legacy
systems.

Index Terms—Software development, Lyee

methodology, static analysis, dynamic
analysis

1. INTRODUCTION

OFTWARE development and
maintenance have become activities at

major importance to our economy. As
software comes into widespread use, this
activity involves a large industry. Hundreds
of billions of dollars are spent every year in
order to develop and maintain software.

Manuscript received May 4, 2004.
Prof. H. Fujita is with the Faculty of Software and

Information Science, Iwate Prefectural University, Iwate,
020-0193 Japan (E-mail: issam@soft.iwate-pu.ac.jp)

Prof. M. Mejri is with the Faculty of Software and
Information Science, Department of Computer Science and
Software Engineering, Laval University, Quebec, G1K 7P4,
Canada

Today, competition between actors is the
software development field is fiercer than
ever. To remain in the race, these actors
(companies) must keep productivity at its
peak and costs low. They must also deliver
products (software) at high quality and
deliver them on time. However, an important
question is whether the available tools and
methodologies for software development
suit company needs.

The work reported here contributed to
research study on building legacy systems
based on Lyee frame work, (http://www.lyee-
project.soft.iwate-pu.ac.jp).

More detailed version of this paper is
available at http://www.lyee-project.soft.
iwate-pu.ac.jp/IPSI .

Basically, the goal of software
development research is to find ways how to
build better software easily and quickly. A
large variety of methodologies and
techniques have been proposed and
elaborated on, over the last 10 years, to
improve one or more steps in the software
development life cycle. Despite their
considerable contributions, they have had
difficulty to finding their way into widespread
use. In fact, almost all of them fail to
produce clearly understood and modifiable
systems and their use is still considered to
be an activity accessible only to specialists
with a large array of competencies, skills,
and knowledge. This, in turn, leads to highly
paid personal, high maintenance costs, and
extensive checks needing to be performed
on the software.

Lyee [1-4] (governementaL methodologY
for softwarE providencE) is specific new and
promising methodology. Intended to deal
efficiently with a wide range of software
problems related to different fields, Lyee
allows the development of software by

Static Analysis of Lyee Requirements for
Legacy System Software

Hamido Fujita and Mohameed Mejri

S

 4

simply defining its requirements. More
precisely, a developer has only to provide
words, calculation formulae, calculation
conditions (preconditions) and layout of
screens and printouts, and then leaves in
the hands of the computer all subsequent
troublesome programming process (e.g.,
control logic aspects). Despite its recency,
the results of the use of Lyee have shown
tremendous potential. In fact, compared to
conventional methodologies, development
time, maintenance time and documentation
volume can be considerably reduced by
using Lyee (as much as 70 to 80\%) 2. Up to
now, a primitive supporting tool called
LyeeAll2 has been available to developers
allowing the automatic generation of code
from requirements. Nevertheless, as with
any new methodology, further research is
needed on Lyee to investigate its efficiency,
to discover and eliminate its drawbacks, and
to improve its good qualities.

In this paper, we show how classical static
analysis techniques can considerably
contribute the analysis of Lyee requirements
(a set of words within their definitions, their
calculation conditions and their attributes) in
order to help their users understand them,
discover their inconsistencies and
incomplete or erroneous parts, and generate
codes of better qualities (consuming less
memory and execution time). Basically, the
static analysis techniques we investigate
are:
? Optimization techniques (constant
propagation, communication sub expression
detection, etc.) to generate better Lyee
programs.
? Slicing techniques to abstract
requirements to their relevant part needed
for some analysis.
? Typing techniques to automatically
generate types and to discover typing errors.

The remainder of this paper is organized
as follows. In Section 2, we give a short and
technical introduction to the Lyee
methodology. Section 3 shows how static
analysis techniques can contribute to the

enhancement of this methodology. Section 4
introduces LyeeAnalyzer, a prototype that
we have developed to implement some

static analysis techniques. Finally, Section 5
provides concluding remarks on this work,
and discusses future research.

2. THE LYEE METHODOLOGY

Most people who have been seriously
engaged in the study and development of
software systems agree that one of the most
problematic tasks in this process is that of
understanding requirements and correctly
transforming them. To solve this problem,
the Lyee methodology proposes a simple
method for to generating programs from
requirements.

With the Lyee methodology, requirements

are given as a set of statements containing
words together with their definitions, their
calculation conditions and their attributes
(input/output, type, etc.). A word is an atomic
element and its definition and calculation
conditions show its interaction wit the other
words.

Although the philosophic principles behind
the Lyee methodology are interesting, in this
section we focus only on some practical
ideas useful to understand how to write
software using this methodology and how to
understand the code that is automatically
generated from Lyee requirements.

2.1 Lyee requirements

Within the Lyee methodology, requirements
are given in a declarative way as a set of
statements containing words together with
their definitions, their calculation conditions
and their attributes (input/output, types,
security attributes, etc.). For the sake of
simplicity, throughout this paper, we
consider each statement to contain the
following information:

? Word: An identifier of a word.
? Definition: An expression defining a word.

We suppose, for the sake of simplicity, that
an expression can be one of the following:
(where _ is the empty expression)

 5

 Exp := val | id _ (Exp) | op Exp | Exp
op Exp
 val:= num | num.num | bool
 num:= 0| 1.. |9| num num
 bool:= true| false
 id:=a| ….|z| A | …. |Z| id num|
id id
 Op :=+| -|*|or |and |< |<= |=
|<> |> |>= |not

? Condition: the calculation condition of the
word; this is an expression Exp that must be
boolean. If there is no condition (the
condition is always true) we leave this field
empty.
? IO: specifies whether the defined word is
an input, output or intermediate word
(neither an input nor an output). If the word
is an input, this field can take the value IF
(input form file) or IS (input from screen).
Similarly, if the word is an output, then this
field can take the value OF or OS. However,
if the word is intermediate, we leave this
field empty.
? Type: specifies the type of the word. It can
take on one of values int, float or bool.
? Security: associates a security level with
the defined word. It takes on one of the
following values public or secret.

Notice that the fields "Type" and "Security"
can be empty if the defined word is not an
input. Notice also, that other types and other
security levels can be easily incorporated to
support others Lyee requirements.
In the rest of this paper, if s is a statement,
then we use:
? sw

to denote the statement defining a word w.
? Definition (s)

 to denote the field "Word" of s.
? Condition(s)

to denote the field "Condition" of s.
? IO(s)

to denote the field "IO" of s.
? Type(s)

 to denote the field "Type" of s.
? Security(s)

to denote the field "Security" of s.
Table 1 below gives an example of Lyee
requirements.

Word Definit-
ion

Condit-
ion

IO Typ
e

Securi
-ty

a b+c b*e>2 OF int secret
c IS float public
b 2*c+5 c>0 float public
e float public

Table 1: Example of Lyee requirements.

The requirements given in Table 1,
correspond intuitively, in a traditional
programming language, to the code given in
Table 2.

Stat
e-
ment

Code

sa If b*e>2 then a:=b+c; output(a);
endif

sc Input(c);
sb If c>2 then b:=2*c+5; output(b);

endif
se Input(e);

Table 2: Statement code

Within the Lyee methodology, the user does
not need to specify the order (control logic)
in which these definitions will be executed.
As shown in Table 2, despite the fact that
the definition of word a uses word b,
statement sb is listed after the statement sa.
As explained in the sequel, form these
requirements, and independent of the order
of statements, Lyee is able to generate code
that computes all the defined words.
This simple idea has, as shown in [1-4],
multiple beneficial consequences on the
different steps of software development. In
fact it allows us to begin developing of
software even with incomplete requirements.

Moreover, the user need not deal with
control logic as with more classical
methodologies. The control logic part of the
software will be, within the Lyee
methodology, automatically generated
reducing consequent programming errors
and time.
Flexibility is also a major benefit of the Lyee
methodology since the maintenance task
can be reduced to a simple modification of
requirements (add, remove and/or modify
words' definitions).

 6

2.2 Code Generation
From the requirements in Table 1, we can
automatically generate a program that
computes the values of a and b and
outputs them. This program will simply
repeat the execution of these instructions
until a fixed point is reached, i.e., any other
iteration will not change the value of any
word as shown in Fig. 1

Fig. 1, Requirement Execution.

Let's be more precise about the structure
and the content of the program that will be
automatically generated by Lyee from
requirements. Within the Lyee methodology,
the execution of a set of statements, such as
the ones given in Table 1, is accomplished
in a particular manner. In fact, Lyee
distributes the code associated with
statements over three spaces, called Pallets
(W02, W03 and W04) in the Lyee
terminology, as shown in Fig.2.

Fig.2. Lyee Pallets

Pallet W02 deals with the input words. Pallet
W03 computes the calculation conditions of
the words and saves the results in boolean
variables. For instance, the condition
"b*e>2" used within the definition of the
word "a" is calculated in W03 and the
true/false result is saved in another variable
"a_cond". Finally, pallet W04 deals with the
calculation of the words according to their

definition given within the requirements. It
also, outputs the values of the computed
words.

Starting from pallet W04, a Lyee program
tries to compute the values of all the defined
words until a fixed point is reached. Once
there is no evolution in W04 concerning the
computation of the word values, control is
given to pallet W02. In its turn, this second
pallet tries repeatedly to input values of
words until a fixed point is reached (no
others inputs are available) and then
transfer the control to pallet W03. Finally,
and similar to pallet W04, pallet W03 tries to
compute the calculation conditions of the
words according to the requirements until a
fixed point is reached. As shown in Fig.3,
this whole process (W04 ? W03 ? W02) will
repeat until a situation of overall stability is
reached and the three pallet linked together
are called Scenario Function.

Fig.3. Scenario Function

Fig.4. Predicate Vector

In addition, Lyee has established a simple
program with a fixed structure (called a
Predicate Vector in the Lyee terminology)
that makes the structure of generated code
uniform and independent of the requirement
content. The global program will be simple
calls of predicate vectors. The structure of a
predicate vector is as shown in Fig.4.

 7

The goal of a predicate vector changes from
one pallet to another. For instance, in the
pallet W04, the first goal is to give a value to
a word according to its definition. For the
example shown in Fig. 2, the predicate
vectors associated with the calculation of the
word "a" and the word "b" are as shown in
Fig.5.

Fig. 5. The Predicate Vectors of L4, a and
L4, b.

Finally, in pallet W03, the goal of the
predicate vectors is to compute
preconditions specified within requirements
as shown in Fig. 6.

Fig.6. The predicate Vectors of L3, a and
L3,b.

Finally, the Lyee program associated with
the requirements given in Table 1 is as
shown in Table 3.
pallet Program Comments
W04 Call S4

Do
 Call L4_a
 Call L4_b
While a fixed point is not
reached
Call 04
Call R4

Initialize memory

Calculate a
Calculate b

Output the result
Go to W02

W02 Do
 Call L2_e
Call L2_c
While a fixed point is
not reached
Call I2

Call R2
W03 Do

Call L3_a
Call L3_b
While a fixed point is not
reached
Call R3

Calculate a_cond
Calculate b_cond

Go to W04

Table: 3 Lyee Generated Program

2.3 Process Route Diagrams
The Scenario Function presented in the
previous section can be a complete program
for a simple case of given requirements,
particularly when all the input and output
words belong to the same screen and there
is no use of any database. However, if we
need to input and output words that belong
to databases or to different screens
interconnected together, then the situation
will be more complicated. For the sake of
simplicity, we deal, in the sequel, only with
the case when we have many screens.
Suppose for instance that we have three
interconnected screens, as shown in Fig.7,
allowing a user to navigate from one to
another.

Fig. 7. Screen Interactions

In fact, some screens may not be visited for
a given execution of the program and then
the computation of the value of their words
will be lost. For that reason, Lyee
associates with each screen its owner
scenario function that will be executed only if
this screen is visited. The scenario functions
associated with screens are connected
together showing the move from one of
them to another. In the Lyee terminology,
many scenario functions connected together
make up a Process Route Diagram as
shown in Fig. 8.

 8

Fig. 8. Processes Route Diagram

To summarize, according to the Lyee
methodology, a program usually contains
several PRDs. Each of these is a set of
interconnected scenario functions and each
scenario function contains three
interconnected pallets W02, W03 and W04.

2.4 Drawback of the Methodology

In spite of the Lyee methodology is
simplicity and its several positive impacts on
all the steps of the software development
cycle, it suffers from a major drawback,
namely, the size of the generated code. In
fact, to each word given within requirements,
it attributes several memory areas. For more
details about the exact amount of memory
consumed by each word, the reader can
refer to [2,3].
The remainder of this paper shows how
static analysis techniques can help produce
Lyee programs that run faster and consume
less memory space, as well providing other
beneficial qualities.

3. STATIC ANALYSIS OF LYEE REQUIREMENTS

Software static analysis [5,6] generally
means the examination of the code of a
program without running it. Experience has
shown that many quality attributes of
specifications and codes can be controlled
and improved by static analysis techniques.
In particular, static analysis techniques can
make programs run faster and use less
memory, and they can help locate faults.
Applied on requirements, static analysis
finds logic errors and omissions before the
code is, generated and consequently allows
the user to save precious development and
testing time. The purpose of this section is to
pinpoint some static analysis techniques that
could improve the qualities of Lyee
requirements and code generated from
those requirements.

4. LYEEANALYZER

The LyeeAnalyzer prototype was
developed to demonstrate the static analysis
techniques presented in this paper.
4.1 Inputs and Outputs

The LyeeAnalyzer takes as input Lyee
requirements and can produce as output
slices and ordered requirements suitable for
the generation of optimized code by the
LyeeAll2 tool. In addition, it can perform
other requirement optimizations, such as
constant propagation, and verifications such
as type safety. The interface to of the
prototype is as shown in Figure.9. The
buttons in the top part of the window
propose to access to the different static
analysis techniques implemented in the tool;
the inputs defined on the left frame, and the
out in the right hand frame.

Fig.9. LyeeAnalyzer main interface

4.2 LyeeAnalyzer Architecture
The basic components of this prototype are
the following:
? Lexical and Syntactic Analyzers: These
components take as input Lyee
requirements and give as output a syntactic
tree commonly called an intermediate
representation. This new representation of
requirements is the starting point of all the
static analysis techniques that we perform.
Furthermore, when parsing the Lyee
requirements, lexical or syntactic errors can
be detected and communicated to the user.
? Semantics Analyzer: This component
allows the discovery of type errors, security
violations, incomplete statements, dead
statements, cyclic statements and
superfluous statements. It also allows us to
generate the missing types, i.e., it generates
the types of all output and intermediate
words.

 9

? Flow-Based Analyzer: Starting from the
intermediate representation generated by
the previous components, the flow-based
analysis component generates all
information related to the circulation of
control and data flow from one requirement
point to another. The results of these
analyses consist of two graphs:
?Control Flow Graph: Each node of this
graph contains a single statement of
requirements and an edge between two
nodes represents direct flow of control
between them.
? Data-Flow Graph: Each node of this graph
contains a single statement of requirements
and an edge between two nodes represents
a data flow (Def/Use information) between
them.
?Optimizer: Amongst others, this component
implements the constant propagation
techniques and generates an ordered and
simplified sequence of statements suitable
for the LyeeAll2 tool to produce a program
that runs faster and consumes less memory.
? Slicer: This component takes as input flow
information (such as the Def/Use information
associated with each word) generated by
the Flow-Based Analysis component and one
or many slicing criteria and gives as output
slices that correspond to these criteria.
Within the classical programming language,
a slicing criterion is generally considered a
pair C=(s,V), where s is a statement and V a
set of variables. Slicing a program according
to this criterion means the generation of all
statements relevant to the computation of
the variables in V given before the statement
s. The LyeeAnalyzer uses the VCG
(Visualization of Compiler Graphs)[13] tool
to display the various involved results
(independent bloc, optimized code, etc.).
The LyeeAnalyzer prototype is intended to
achieve at least the following goals:
? Help the LyeeAll2 tool to generate efficient
programs.
? Help the user to understand and maintain
Lyee requirements, especially for those
containing a large number of statements:
Among others, the slicing technique is
potentially suitable for this goal.
? Help the user debug requirements:
Finding incomplete or inconsistent
requirements.

? Automatic parallelization: Identifies
independent slices that could be computed
in parallel.
? Automatic generation of types: Given the
types of the input words, this tool generates
the types of output and intermediate words.

5. CONCLUSION AND FUTURE WORK

 We have reported in this paper the use
of static analysis techniques on the Lyee
requirements and their impacts. First, we
have shown how classical optimization
techniques such as constant propagation
and common subexpression detection can
be used to improve the execution time of the
Lyee programs. We have also shown how to
discover errors in requirements (dead
definition, cyclic definition, incomplete or
superfluous definitions). Second, we have
shown how slicing techniques can
potentially improve the understanding and
the maintenance of Lyee systems. Also, we
have shown how to find independent parts
of Lyee systems that can be executed in
parallel using slicing techniques. Third, we
have proposed a type system allowing both
the detection of typing errors and the
automatic generation of types of the
intermediate and output words. Forth, we
have shown how the Lyee methodology is
suitable for some extensions such as
security aspects. Some of the presented
static analysis techniques are now
implemented in a prototype called
LyeeAnalyzer. As future work, we want to
investigate other static and dynamic analysis
techniques to improve other aspects of the
Lyee methodology.

ACKNOWLEDGMENT

Special thanks are due to Dr Fumio Negoro,
all the members of his group and those of
Catena Co., for their assistance and
comments and suggestions.

REFERENCES

[1] F. Negoro, Principle of Lyee software, 2000
International Conference on Information Society in
21st Century (IS2000) (2000) 121–189.

[2] F. Negoro, Introduction to Lyee, The Institute of
Computer Based Software Methodology and
Technology, Tokyo, Japan, 2001.

[3] F. Negoro, I. Hamid, A proposal for intention
engineering, 5th East-European Conference

 10

Advances in Databases and Information System
(ADBIS’2001).

[4] F. Negoro, I. Hamid, A proposal for intention
engineering, International Conference on Advances
in Infrastructure for Electronic Business, Science,
and Education on the Internet (SSGRR 2001) .

[5] M. Bozga, J. C. Fernandez, L. Ghirvu, Using static
analysis to improve automatic test generation,
2000, pp. 235–250.

[6] S. Muchnick, Compiler Design Implantation, Morgan
Kaufman Publishers, California, 1999.

[7] T. HENNING, Optimization Methods, Springer-
Verlag, 1975.

[8] W. Weiser, Program slicing, IEEE Trans Software
Eng. (1984) 352–357.

[9] F. Tip, A survey of program slicing techniques,
Journal of Programming Languages 3 (3) (1995)
121–189.

[10] D. Volpano, G. Smith, C. Irvine, A sound type
system for secure flow analysis, Journal of
Computer Security 4 (3) (1996) 167–187.

Hamido Fujita;
Professor at Faculty of Software and Information
Science, at Iwate Prefectural University, Iwate, JAPAN,
also, he is the director of Intelligent System Software
Laboratory, and Director of Cognitive thinking Systems
Laboratory, both at Iwate Prefectural University. Also,
Prof. Fujita is the main leader of Lyee International
Research Project,
http://www.lyee-project.soft.iwate-pu.ac.jp/
He is also the general Chair of the SOMET conferences
series,http://www.lyee-project.soft.iwate-
pu.ac.jp/en/conference/index.html.

